Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1226-9999(Print)
ISSN : 2287-7851(Online)
Korean J. Environ. Biol. Vol.37 No.3 pp.285-292
DOI : https://doi.org/10.11626/KJEB.2019.37.3.285

New records of two filamentous brown algae, Acinetospora filamentosa and Microspongium stilophorae from Korea

Antony Otinga Oteng’o, Jose Avila-Peltroche, So Young Jeong, Boo Yeon Won, Tae Oh Cho*
Department of Life Science, Chosun University, Gwangju 61452, Republic of Korea
Corresponding author Tae Oh Cho Tel. 062-230-7161 E-mail. tocho@chosun.ac.kr
22/07/2019 16/08/2019 19/08/2019

Abstract


Acinetospora filamentosa and Microspongium stilophorae are reported as new records from South Korea based on morphological and molecular analyses. A. filamentosa is mainly characterized by having the sparsely branched erect filaments, the scattered meristematic zones, forming crampons, plurilocular sporangia on both prostrate filaments and lower part of erect filaments, and spherical to oval unilocular sporangia formed either sessile or with a pedicel. M. stilophorae is an epiphytic thalli mostly on Stilophora sp. It is characterized by prostrate filaments with irregular cells, short erect filaments with short ramuli, phaeophycean hairs, uniseriate plurilocular sporangia on the terminal part of erect filament. Our molecular analyses of rbcL and cox1 genes reveals that A. filamentosa and M. stilophorae are nested within the clades of Acinetospora and Microspongium, respectively.



초록


    Ministry of Environment
    NIBR 201801205Chosun University
    Ministry of Education, Science and Technology
    2019R1F1A1060346Ministry of Oceans and Fisheries
    20170431

    INTRODUCTION

    The filamentous brown algal genus, Acinetospora, was described by Bornet in 1892. It is characterized by having sparsely branched uniseriate filaments forming entangled tufts, scattered meristematic zones, crampons, plurilocular sporangia (acinetosporangia), and monosporangia (Bornet 1892;Sauvageau 1899). Currently, four Acinetospora species are recognized from worldwide: A. crinita (Carmichael in Harvey) Sauvageau from Scotland (Womersley 1987), A. nicholsoniae Hollenberg from California, U.S.A. (Hollenberg 1971), A. filamentosa (Noda) Yaegashi from Japan (Noda 1970;Yaegashi et al. 2015), and A. asiatica Yaegashi, Yamagishi et Kogame from Japan (Yaegashi et al. 2015). Of them, A. crinita and A. asiatica have been reported in Korea (Kim 2010;Oteng’o et al. 2018).

    The genus Microspongium was described by Reinke in 1888. It is characterized by pulvinate thalli with spongy-gelatinous structure, monostromatic base of apparently scattered filaments, branched and densely intricate erect filaments, 1-3 discoid phaeoplasts per cell, and plurilocular sporangia on terminal or lateral part of the erect filaments (Rienke 1888;Fletcher 1987;Peters 2003). Currently, six Microspongium species are recognized from worldwide: M. alariae (P. M. Pedersen) A. F. Peters from Greenland (Pedersen 1981;Peters 2003), M. globosum J. Rienke from Germany (Rienke 1888), M. immersum (Levring) P. M. Pedersen from Norway (Levring 1937; Athanasiadis 1996), M. kuckuckianum V. Schiffner from Adriatic Sea (Schiffner 1916), M. radians (M. Howe) A. F. Peters from Peru (Dawson et al. 1964) and M. stilophorae (P. L. Crouan & H. M. Crouan) Cormaci et G. Furnari from Adriatic Sea (Crouan and Crouan 1867;Hauck 1884). None of these has been reported in Korea.

    We collected two unidentified filamentous brown algae from coast of Korea. We observed their detailed morphology and analysed molecular data based on rbcL and cox1 genes for their phylogenetic relationships. In this study, we add Acinetospora filamentosa and Microspongium stilophorae to the Korean marine algal inventory.

    MATERIALS AND METHODS

    1. Morphology

    Samples of Acinetospora filamentosa were collected from west and south coasts of Korea. They were sorted into voucher herbarium specimens, silica gel samples, and formalin samples. Formalin samples were preserved in 4-5% formalin/ seawater. A sample of Microspongium stilophorae was collected from east coast of Korea. It was isolated from Dictyopteris pacifica and cultured in provasoli enriched seawater (PES) medium in order to get enough material for morpho- anatomical and molecular analysis. Photomicrographs taken using an Olympus BX51TRF microscope (Olympus, Tokyo, Japan) and an Olympus DP71 camera. Permanent slides were mounted in 70% karo syrup. Representative specimens examined in this study were deposited in the herbarium of Chosun University (CUK) and National Institute of Biological Resources (NIBR), Korea.

    2. Molecular study

    Genomic DNA was manually extracted from silica-gel samples using extracted using a NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany). The extracted DNA was stored at -20°C and used to amplify rbcL and cox1. The rbcL gene was amplified using the primer combinations NDrbcL2-DRL1R and DRL2F-R3A (Kogame et al. 1999;Hwang et al. 2005) with HelixAmp Ready-2x-Go Series (NanoHelix Co., Ltd., Daejeon, Korea). The GazF2- GazR2 combination of primers used for cox1 (Saunders 2005;Lane et al. 2007). All PCR amplication were carried out with a Veriti 96-well Termal cycler (Applied Biosystem, ThermoFisher Scientific, USA). PCR products were purified using a PCRquick-spinTM PCR product purification kit (iNtRON Biotechnology, Inc, Seongnam, Korea). All rbcL and cox1 sequence data were compiled by the present study and obtained from GenBank and aligned with ClustalW (Thompson et al. 1994). New rbcL sequences obtained from Acinetospora filamentosa have been deposited in EMBL/GenBank under the accession numbers MN 052856 (CUK12425), MN052857 (CUK13048), MN 052858 (CUK12847) and MN052859 (CUK18942). Asterocladon rhodochortonoides and A. interjectum were selected as outgroup. Microspongium stilophorae sequence data are deposited in EMBL/GenBank under accession number MN052860 (CUK19276) for cox1. Laminaria yezoensis and Saccharina groenlandica were selected as outgroups.

    Phylogenetic analyses were conducted using MEGA version 6.06 (Tamura et al. 2013). Maximum likelihood analyses were conducted using the GTR+G+I model, with 1,000 bootstrap replicates. Bayesian inference was performed using MrBayes 3.2.6 (Huelsenbeck and Ronguist 2001;Ronguist and Huelsenbeck 2003). Markov chain Monte Carlo runs were conducted for 2 million generations, each with one cold chain and three heated chains using the GTR+Γ+I evolutionary model and sampling and printing every 1,000 generations. Summary trees were generated using a burn-in value of 800.

    RESULTS AND DISCUSSION

    Acinetospora filamentosa (Noda) Yaegashi, Uwai et Kogame, 2015 실솜말 (신칭) (Figs. 1, 2)

    Basionym:Ectocarpus filamentosusNoda 1970. Sci. Rep. Niigata Univ. Ser. D. 7: 27.

    Heterotypic Synonym:Ectocarpus ugoensis Konno in Konno et Noda 1974. Sci. Rep. Niigata Univ. Ser. D. 11: 80.

    Material examined: NIBROR0000001612 & CUK12425 (= MBRB0099TC12425) Chuja-hang, Chuja-myeon, Jeju-si, Jeju Special Self-govering Province, Korea (33° 57ʹ44.69″N, 126°17ʹ47.12″E), June 27, 2014, T. O. Cho, S. Y. Jeong, D. B. Mostajo, J. G. Lee and S. Y. Park, at 1 m depth by hand; CUK12847 (= MBRB0099TC12847), Daejin- hang, Daejin-dong, Donghae-si, Gangwon-do, Korea (37°34ʹ 47.64″N, 129°6ʹ51.13″E), August 01, 2014, T. O. Cho, S. Y. Jeong, D. B. Mostajo, J. G. Lee and S. Y. Park, at 1 m depth by hand; CUK13048 (= MBRB0099TC13048), Biyang-do, Hanrim-eup, Jeju-si, Jeju Special Self-govering Province, Korea (33°24ʹ 21.9″N, 126°13ʹ46.40″E), May 30, 2014, T. O. Cho, S. Y. Jeong, D. B. Mostajo and J. G. Lee, at 1 m depth by hand; CUK18942 (= MBRB0099TC18942), Mo-hang, Byeonsan-myeon, Buan-gu, Jeollabuk-do, Korea (35°34ʹ 58.49″N, 126°30ʹ18.41″E), May 12, 2018, T. O. Cho and B. Y. Won, at 1 depth by hand.

    Habitat: Epiphytic and saxicolous at the tide pool in intertidal zone.

    Morphological observation: Plants are uniseriate, forming entangled tufts (Fig. 1A) to 10 cm or more in length attached to rocks and other seaweeds (e.g. Sargassum spp.). Erect filaments are irregularly and sparsely branched at wide to right angles (Fig. 1B) and form straight to curved “crampons” composed of 2-5 cells (Fig. 1C). Meristematic zones (Fig. 1D) are scattered, consisting of short cells. Cells of erect filaments are 20-80 μm in length and 18-28 μm in width, containing many discoid chloroplasts (Fig. 1E) with pyrenoids. Phaeophycean hairs (Fig. 1F) are found later-ally or terminally on erect filaments. Unilocular sporangia are spherical to oval, 25-55 μm in length and 25-55 μm in width, sessile or on a pedicel, and are formed on erect filaments.

    World distribution: Asia: Japan and Korea; Europe: Greece (Guiry and Guiry 2019).

    Identifier: Tae Oh Cho and Antony Otinga Oteng’o.

    Phylogenetic analyses: The 1326-nucleotide portion of rbcL was aligned for Acinetosproa filamentosa. Phylogenetic analyses revealed that our Acinetospora samples from Korea were placed within a clade of Acinetospora filamentosa in rbcL (Fig. 2). There was only 0-0.008% gene sequence divergence between Genbank and our collection of Acinetospora filamentosa. In addition, it revealed that Acinetospora filamentosa differs from A. asiatica by 4.4-4.7% and from A. crinita by 3.0% gene sequence divergence respectively.

    Remarks:Acinetospora filamentosa was a new combination with Ectocarpus filamentosus as the basionym (Yaegashi et al. 2015). Our samples collected from Korea had vegetative morphology similar to that of A. filamentosa. Our molecular analyses based on rbcL gene show that our samples are nested in the clade of A. filamentosa. In this study, we report A. filamentosa as a new record from Korea and add this species in the list of Korean macroalgal flora.

    MicrospongiumReinke, 1888, 점말속 (신칭)

    Microspongium stilophorae (P. L. et H. M. Crouan) Cormaci et G. Furnari, 2012 바늘점말 (신칭) (Figs. 3, 4)

    Basionym:Ectocarpus stilophorae P. L. et H. M. Crouan, Florule du Finistére…., 1867: 161, Paris and Brest. x+262 pp., 31 [+1] pls, frontispiece.

    Homotypic synonym (s):Streblonema stilophorae (P. L. Crouan & H. M. Crouan) De Toni 1895;Streblonema stilophorae (P. L. Crouan & H. M. Crouan) Kylin 1908 (comb. illeg.).

    Heterotypic synonym (s):Ectocarpus stilophorae f. caespitosusRosenvinge 1893;Ectocarpus stilophorae v. caespitosus (Rosenvinge) L. Newton 1931;Microspongium tenuissimum (Hauck) A. F. Peters 2003;Streblonema stilophorae v. caespitosum (Rosenvinge) De Toni 1895;Streblonema tenuissimumHauck 1884.

    Material examined: NIBROR0000001610 & CUK19276 (= MBRB0097TC19276) Yangjeong-hang, Uljin-eup, Uljin-gun, Gyeongsangbuk-do, Korea (37°00ʹ59.15″N, 129°24ʹ48.17″E), May 01, 2018, T. O. Cho and B. Y. Won, at 1 m depth by hand.

    Habitat: Epiphytic on other seaweeds (e.g. on Stilophora sp., Nemalion sp. and Dictyopteris pacifica) at the tide pool in intertidal zone.

    Morphological observation in culture: Cultured thallus isolated from Dictyopteris pacifica forms a spongy ball-like spherical tissue (Fig. 3A) formed by prostrate filaments of irregular cells in shape and size (Fig. 3B, arrows) and short erect filaments with short ramuli (Fig. 3B, arrowheads). Erect filaments are formed by cells 1-5 times longer than wide and 3-8 μm in diameter. The phaeoplasts (Fig. 3C, arrows) are one or two per cell. Phaeophycean hairs not frequent. Plurilocular sporangia lateral or mostly terminal, in uniseriate lodges, 3-8 μm wide (Fig. 3D, arrows).

    World distribution: Arctic: Canada; Asia: Korea; Atlantic Islands: Iceland; Europe: Black Sea, Britain, Channel Islands, Faroe Islands, France, Ireland, Romania, Scandinavia and Spain (Guiry and Guiry 2019).

    Identifier: Tae Oh Cho and Antony Otinga Oteng’o.

    Phylogenetic analyses: The 613-nucleotide portion of cox1 was aligned for Microspongium stilophorae. Phylogenetic analyses revealed that our Microspongium sample from Korea was nested in a clade of Microspongium stilophorae based on cox1 (Fig. 4). In addition, it revealed that the gene sequence divergence between M. stilophorae (= “M. tenuissimum”) and M. alariae is 2.9-3.6%. However, there was only 0.16-0.49% gene sequence divergence between Genbank and our collection of M. stilophorae.

    Remarks: Morphologically, our Microspongium sample is matched into the description of Microsporangium stilophorae. Microspongium tenuissimum and M. radians were conspecific based on cox1 gene (Murúa et al. 2018). Microspongium tenuissimum is currently a synonym of M. stilophorae (Cormaci et al. 2012;Guiry and Guiry 2019). Our molecular data based on cox1 gene revealed that our Korean sample is nested in the same clade of M. stilophorae. In this study, we report Microsporangium stilophorae as a new record from Korea and add this species to the list of Korean macroalgal flora.

    ACKNOWLEDGEMENTS

    This study was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR 201801205) and by a grant from the research fund of Chosun University 2018. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1F1A1060346) and a grant from Marine Biotechnology Program (20170431) funded by Ministry of Oceans and Fisheries of Korean Government to Tae Oh Cho.

    Figure

    KJEB-37-3-285_F1.gif

    Acinetospora filamentosa (CUK18942) from Mohang, Jeollabuk-do, Korea. A. Thalli forming entangled tufts; B. Erect filaments with crampons; C. Crampon on erect filament; D. Meristematic zone (arrows) on erect filaments; E. Cell with discoid chloroplasts; F. Phaeophycean hairs on erect filaments. Scale bars: A=0.5 cm; B=1 mm; F=500 μm; C, D=50 μm; E=20 μm.

    KJEB-37-3-285_F2.gif

    Phylogenetic tree of Acinetospora species based on Bayesian and ML analysis with rbcL sequences. Value above branches=Bayesian posterior probabilities>0.75/Maximum likelihood bootstrap values in %>50. Values lower than BPP 0.75 or BS 50 are indicated by hyphens (-). Values of BPP 1.00 or BS 100 are indicated by asterisks (*).

    KJEB-37-3-285_F3.gif

    Microspongium stilophorae (CUK19276) from Yangjeong-hang, Gyeongsangbuk-do, Korea. A. A ‘ball -like’ spongy spherical thallus; B. Prostrate filaments of irregular cells (arrows) and short erect filaments (arrowheads); C. Laminar- and lobate-shaped phaeoplasts (arrows); D. Uniseriate plurilocular sporangia (arrows) mostly on the terminal part of erect filaments. E. Uniseriate plurilocular sporangia. Scale bars: A=250 μm; B-D, E=20 μm.

    KJEB-37-3-285_F4.gif

    Phylogenetic tree of Microspongium species based on ML and Bayesian analysis with cox1 sequences. Value above branches=Maximum likelihood bootstrap values in %>50/ Bayesian posterior probabilities>0.75. Values lower than BS 50 or BPP 0.75 are indicated by hyphens (-). Values of BS 100 or BPP 1.00 are indicated by asterisks (*).

    Table

    Reference

    1. Athanasiadis A. 1996. Taxonomisk litteratur och biogeografi av Skandinaviska rödalger och brunalger. pp. 1-280, 1map. Goteborg: Algologia.
    2. Bornet E. 1892. Note sur quelques Ectocarpus. B. Soc. Bot. Fr. 38:353-372.
    3. Cormaci M , G Furnari, M Catra, G Alongi and G Giaccone.2012. Flora marina bentonica del Mediterraneo: Phaeophyceae. Bollettino dell’accademia Gioenia di scienze naturali di Catania. 45 (375):1-508.
    4. Crouan PL and HM Crouan.1867. Florule du Finistère: Contenant les descriptions de 360 espèces nouvelles de sporagames, de nombreuses observations et une synonymie des plantes cellulaires et vasculaires qui croissent spontanément dans ce département; accompagnées de trente-deux planches où est représentée l’organographie, faite sur l’état vif. des fruits et des tissus de 198 genres d’algues avec la plante grandeur naturelle ou réduite plus une planche supplémentiare ou sont figurés 24 champignons nouveaux. Paris and Brest: Friedrich Klincksieck..
    5. Dawson EY , OC Acleto and N Foldvik.1964. The Seaweeds of Peru. Beihefte zur Nova Hedwigia 13:1-111, 81 pls.
    6. De Toni GB. 1895. Sylloge algarum omnium hucusque cognitarum. Vol. III. Fucoideae. Vol. 3 pp. [i] -xvi, [1]-638.
    7. Fletcher RL. 1987. Seaweeds of the British Isles. Vol. 3. Fucophyceae (Phaeophyceae). Part 1. British Museum (Natural History), London, UK.
    8. Guiry MD and GM Guiry.2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 20 June 2019.
    9. Hauck F. 1884. Die Meeresalgen Deutschlands und Osterreichs. pp. 321-512. In Kryptogamen-Flora von Deutschland, Osterreich und der Schweiz, Zweite Auflage. (Rabenhorst, L. Eds) Vol. 2. Leipzig: Euard Kummer.
    10. Hollenberg GJ. 1971. Phycological notes. V. New species of marine algae from California. Phycologia 10:11-16.
    11. Hwang IK , HS Kim and WJ Lee.2005. Polymorphism in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae) from Korea. Mar. Biol. 147:999-1015.
    12. Hyuelsenbeck JP and F Ronquist.2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
    13. Kim HS. 2010. Ectocarpaceae, Acinetopsoraceae, Chordariaceae. pp. 3-137. In Algal Flora of Korea. Volume 2, Number 1. Heterokontophyta: Phaeophyceae: Ectocarpales. Marine Brown Algae I (Kim HS and SM Boo eds.). National Institute of Biological Resources, Incheon.
    14. Kogame K , T Horiguchi and M Masuda.1999. Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequences of rbcL, partial rbcS, and partial LSU nrDNA. Phycologia 38:496-502.
    15. Konno K and M Noda.1974. On the species of Ectocarpus Lyngbye from the coast of Akita Prefecture facing the Japan Sea. Sci. Rep. Niigata Univ. Ser. D. 11:75-80.
    16. Kylin H. 1908. Zur Kenntnis der Algenflora der schwedischen Westkuste. Arkiv for Botanik, Uppsala. 7:1-10.
    17. Lane CE , SC Lindstrom and GW Saunders.2007. A molecular assessment of north east Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44:634-648.
    18. Murua P , FC Kupper, LA Munoz, M Bernard and AF Peters.2018. Microspongium alariae in Alaria esculenta: a widely-distributed non-parasitic brown algal endophyte that shows cell modifications within its host. Bot. Mar. 61:343-354.
    19. Newton L. 1931. A Handbook of The British Seaweeds. pp. [i]-xiii, 1-478, 270 figs. London: The Trustees of the British Museum, British Museum (Natural History), Cromwell Road, S.W.7.
    20. Noda M. 1970. Some marine algae collected on the coast of Iwagasaki, Prov. Echigo facing the Japan Sea. Sci. Rep. Niigata Univ. Ser. D. 7:27-35.
    21. Oteng’o AO , J Avila-Peltroche, SY Jeong, BY Won and TO Cho.2018. New records of two filamentous brown algae, Acinetospora asiatica and Botrytella reinboldii from Korea. Korean J. Environ. Biol. 36:329-335.
    22. Pedersen PM. 1981. The life histories in culture of the brown algae Gononema alariae sp. nov. and G. aecidioides comb. nov. from Greenland. Nord. J. Bot. 1:263-270.
    23. Peters AF. 2003. Molecular identification, distribution and taxonomy of brown algal endophytes, with emphasis on species from Antarctica. pp. 293-302. In Proceedings of the 17th International Seaweed Symposium. Cape Town.
    24. Reinke J. 1888. Die braunen Algen (Fucaceen und Phaeosporeen) der Kieler Bucht. Berichte der deutsche botanischen Gesellschaft 6:14-20.
    25. Ronquist F and JP Huelsenbeck.2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
    26. Rosenvinge LK. 1893. Gronlands Havalger. Meddelelser om Gronland. 3:763-981.
    27. Saunders GW. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. Trans. R. Soc. B-Biol Sci. 360:1879-1888.
    28. Sauvageau C. 1899. Les Acinetospora et la Sexualite des Tilopteridacees. J. De Bot. 13:107-127.
    29. Schiffner V. 1916. Studien uber algen des adriatischen Meeres. Helgoland. Wiss. Meer. 11:127-198.
    30. Tamura K , G Stecher, D Peterson, A Filipski and S Kumar.2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30:2725-2729.
    31. Thompson JD , DG Higgins and TJ Gibson.1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position –specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
    32. Womersley HBS. 1987. The Marine Benthic Flora of Southern Australia. Part II. Adelaide: South Australian Government Printing Division.
    33. Yaegashi K , Y Yamagishi, S Uwai, T Abe, WJE Santianez K and Kogame.2015. Two species of the genus Acinetospora (Ectocarpales, Phaeophyceae) from Japan: A. filamentosa comb. nov. and A. asiatica sp. nov. Bot. Marina 58:331-343.